THE SCIENCE OF SELF-REGULATION:
IMPLICATIONS FOR PROGRAMS AND POLICIES FOR
CHILDREN AND FAMILIES IN POVERTY

Clancy Blair, PhD
Department of Applied Psychology
Steinhardt School of Culture, Education, and Human Development
New York University
http://steinhardt.nyu.edu/apppsych/phd/psychological_development
Self-Regulation and Child Development

- Self-regulation as a general goal for children’s development
- Skills and abilities that enable children to
 - Be exuberant, run and play but also sustain attention and stay focused
 - Be emotionally expressive, but also to regulate emotion
 - Take initiative but also to comply
 - To be conscientious in social interaction
Self-Regulation and Adult Development

- Self-regulation as an important skill for adults
- Skills and abilities that enable us to
 - Handle stress in our jobs and relationships
 - To resist immediate gratification
 - To avoid poor decisions that we later regret
 - To plan and to problem solve
 - To be more effective parents and teachers
The Science of Self-Regulation

- Multiple components, terms, definitions

- Grit
- Self-Control
- Inhibitory Control

- Executive Functions
 - Effortful Control
 - Delay of Gratification

- Executive Attention
- Emotion Regulation
Self-Regulation is a system composed of multiple components:

- **Cognitive**
 - Executive functions and the control of attention
- **Emotional**
 - Reactivity and regulation of the timing and intensity of emotional responses
- **Behavioral**
 - Temperament, personality characteristics, traits
- **Physiological**
 - Reactivity and regulation of stress response systems
- **Genetic**
 - Differences in catecholamine genes but also in gene expression
Executive Functions

- Early regulation of “lower” level systems sets the stage for the emergence of higher order regulation - Executive Functions
- Healthy physiological, emotional, and attention development in the early years are indicative of healthy development of EF
- Implications
 - Development: Importance of early parenting and early education
 - Measure activity in lower as well as higher level parts of the system
 - Expectation for large effects from high quality services for children and families in highly disadvantaged contexts
Self-Regulation develops from Other-Regulation
The Science of Self-Regulation

- It also emerges from initial capabilities in infancy related to **attention**, **emotion**, and **physiological** characteristics.
Attention

FIGURE 5.4
INFANTS’ NUMBER SENSE. Shown here is one of the sequences in Karen Wynn’s (1992) study of 5-month-old infants’ number sense. The experimenter was hidden behind the display and manipulated the objects through a trap door in the wall of the display. Five-month-olds look longer at the impossible outcome (only one object) than the possible outcome (two objects) of the event that followed the screen drop.
Emotion
Stress Response Physiology

The hypothalamus sends CRH to the pituitary, which responds by secreting ACTH. ACTH then causes the adrenals to release cortisol into the bloodstream.

Source: NIDDK Image Library

A. Structure of amylase
When we experience stress, physiological systems produce chemicals that prepare the body and mind for response.

Executive functions are associated with prefrontal cortex (PFC) and dependent on levels of stress hormones.
Yerkes-Dodson

Complex learning, executive function

Simple learning, reactivity, fear conditioning

EXECUTIVE FUNCTION ABILITY

EMOTION, ATTENTION, STRESS PHYSIOLOGY
Neuroscience of Self-Regulation

- Brain architecture is established early in life
- Brains are built over time, starting in the earliest years of life. Simple skills come first; more complex skills after
- A strong foundation in the early years improves the odds for positive outcomes
- Stable, caring relationships shape brain architecture
- Toxic stress in the early years derails healthy development
Neural Circuits are Wired in a Bottom-Up Sequence

Sensory Pathways (Vision, Hearing)
Language
Higher Cognitive Function

Executive Function Development

- Prefrontal cortex is slow maturing area of the brain; development into young adulthood
- Cells that “fire together, wire together”
The Ability to Change Brains Decreases Over Time

Source: Levitt (2009)

Birth	10	20	30	40	50	60	70
Normal Brain Plasticity Influenced by Experience | Physiological “Effort” Required to Enhance Neural Connections

Source: Levitt (2009)
Psychobiological model

- The context in which child development takes places shapes children’s self-regulation
- Effects of experience on children’s development
 - Parenting and Family
 - Neighborhoods and Communities
 - Classrooms and Schools
Psychobiological model

- Moderate, short-lived stress can build a healthy stress response system
- Toxic stress — excessive activation of the stress response system — tunes the brain to be reactive rather than well regulated
Family Life Project

- Longitudinal, population based sample (N = 1,292) followed from birth in predominantly non-urban, low-income communities in North Carolina and Pennsylvania
 - Program project funded by NICHD
 - Data collection in the home at 7, 15, 24, 36, 48, and 60 months of age to assess aspects of parenting and family ecology
 - Child emotion, attention, stress physiology, and executive functions
Family Life Project

“Here’s another picture. Which of these... is the same as this new one?”
The Stress Response System

- Cortisol – a steroid hormone detectable in saliva
- Prepares the body and mind for response to the unexpected and unusual
- In the short run, a very good thing
Emotional Reactivity and Regulation
When I tap one time, you tap two times …

…and when I tap two times, you tap one time.

peg

okay…

alright …
Executive Function

from Jacques and Zelazo (2001), *Developmental Neuropsychology*
Executive Function
Executive Function

Item 1
Executive Function
Executive Function
Executive Function
Executive Function
Executive Function
Executive Function
Parenting

- Sensitivity
- Scaffolding
- Positive regard
- Stimulation for development
- Detachment
- Intrusiveness
“Here’s another picture. Which of these... is the same as this new one?”
Executive Function at age 3 years

Parenting Positive 7, 15, 24 mos

Parenting Negative 7, 15, 24 mos

Cortisol Baseline 7, 15, 24 mos

Executive Functions 36 mos

IQ 36 mos

Income-to-Need Ratio
Maternal Education
African American ethnicity

Blair et al. (2011) *Child Development*
School Readiness

- Basic knowledge, skills, letters, numbers, etc.
- But also to...
 - take turns, communicate wants and needs verbally
 - be enthusiastic and curious in approaching new activities
 - pay attention and follow directions, not be disruptive, be sensitive to other children’s feelings
School Readiness

- Executive functions are essential for school readiness and early school achievement
 - Go hand-in-hand with basic knowledge, skills, letters, numbers, etc.
- Are executive functions and self-regulation a primary path through which poverty affects children’s chances for success in school and in life?
- If so, what can we do about it?
Supporting Self-Regulation

- A focus on early caregiving and support for self-regulation in parents in poverty
- Poverty-related stressors hypothesized to shape adult self-regulation
- Stress will be associated with negative appraisals of parenting and child behavior

[Diagram showing the process of stressor to response: Poverty-related stressors -> Stimulus e.g. child crying -> attention -> appraisal -> Behav response]
Supporting Self-Regulation

- “Buffering Toxic Stress” Consortium – 6 projects funded by ACF
- Early Head Start – University partnership grants

- Programs to support parenting in poverty can alter developmental process leading from stress in caregivers to stress in children and poor self-regulation, executive function problems, deficits at school entry

- Projects have 3 goals
 - Validation
 - Implementation
 - Experimental Evaluation
The NYU ABC Project

- 204 families recruited through Early Head Start grantees and medical clinics in NYC area
- Predominantly Spanish speaking sample
- Pretest, post-test, and post-post home visits for data collection
Playing and Learning Strategies (PALS)

- Developed by Susan Landry, University of Texas at Houston, Children’s Learning Institute (CLI)
- 14-week curriculum
- Sessions include: signals, warm responsiveness, guiding child’s behavior, labeling, etc.
- Review of concept (includes watching of PALS DVD clips), videotaped coaching session, and review of coaching session
- Certification Process: two taped sessions are reviewed by CLI for approval
- Ongoing supervision and support for HVs delivering the curriculum through project-funded Clinical Supervisor
The NYU ABC Project

- Expectations for efficacy of effective parenting program
 - Video-based training orients parents’ focus of attention to child verbal and nonverbal cues
 - Offer means of changing parents’ framing or appraisal of child behavior, parenting competence
 - Offer alternative coping strategy (behavioral response) that has higher likelihood of “working” — child compliance, etc. serve immediate reinforcement, “payoff”
In addition to coaching new parenting strategies, PALS requires skills in video, IT, information management:

- 9 out of 10 HVs had between 2-10 yrs. experience as ECE teachers
- Few HVs had relevant past work experience; many new to home visiting
- 70% reported that PALS pushes them to learn new computer skills
- 100% reported being pushed to learn new record-keeping skills
- 100% reported that they would recommend PALS to other Home Visitors
- 80% reported it has increased confidence in skills
Early Education

- Chicago School Readiness Project (Cybele Raver, PI)
 - Teacher training and coaching by a mental health consultant to improve the emotional climate of the classroom, lower children’s level of conflict with peers, and lower teacher stress
 - Improving the emotional climate should reduce self-regulation challenges for children and teachers, increase attention focus and executive function, and increase learning outcomes
 - N=509 children in 35 Head Start classrooms
Impacts on CLASS, end HS Year

SOURCE: Raver, Jones, Li-Grining, Metzger, Champion, & Sardin (2008), *Early Childhood Research Quarterly.*
NOTES: Significance levels are indicated as * p < 0.10; ** p < 0.05; *** p < 0.01.
CSRP: Impacts on Children’s Self-Regulation and Pre-Academic Skills

Effect Size

Executive Functioning **
Effortful Control
Attention/Impulsivity **
PPVT **
Letter Naming ***
Early Math Skills ***

SOURCE: Raver, Jones, Li-Grining, Zhai, Bub, & Pressler, 2008
NOTES: Significance levels are indicated as * p < 0.10; ** p < 0.05; *** p < 0.01.
Early Education

- Child-directed
- Teacher-scaffolded
- Planned in advance
- Play-based
- Regulation with peers
- Embedded academic content
Play Plans

Madeleine

I am going to take people's orders.
Cognitive Self-Regulation

- Children are asked to talk about how they “know things”
- Children act as a checker for another child, practicing a version of “reflection on action”
Tools of the Mind

- Professional Development for Teachers
 - Understanding the development of EF/Self Regulation
 - How and why of activities and how they contribute to the development of EF/Self-Regulation
 - Tools philosophy of teaching and learning
 - Activities with self-regulation practice as a focus
 - Teachers’ perspectives change as children become more regulated
Tools of the Mind in Kindergarten
Tools of the Mind in Kindergarten

- Children play games based on fictional narratives
- Children follow a learning plan, complete a work product, and set learning goals
Tools of the Mind Kindergarten

- Cluster randomized controlled trial at the School level
- 12 districts, 29 schools, 79 classrooms, 725 children
- Schools ranged from 3% to 92% free/reduced lunch eligible
- Fall and Spring of K, follow-up in Fall of first grade
Tools of the Mind Kindergarten
Effect of the Tools of the Mind curriculum on growth in reading (linear slope) from the beginning of kindergarten through the fall of first grade, $b=3.88$, $se=1.21$, $p=.001$.
Growth in Vocabulary

![Chart showing growth in vocabulary proficiency from end of the kindergarten year to the first grade. The chart compares 'Control' and 'Tools' groups. The 'Control' group shows a slight increase, while the 'Tools' group shows a significant increase. The vertical axis represents proficiency levels ranging from 64 to 80.](chart.png)
Classroom quality in Tools K

The chart illustrates the relationship between classroom organization and the percentage of free/reduced lunch students. The data points are differentiated by treatment and control groups. The chart shows that there is a negative correlation between classroom organization and the percentage of free/reduced lunch students, with a treatment R^2 Linear of 0.005.
Classroom quality as mechanism
Classroom Quality

- Self-regulation as a focus for definition and measurement of classroom quality
- The social-emotional environment of the classroom
- The teacher-child relationship
Conclusions and Implications

- School and community efforts can recognize healthy child development at multiple levels (genes, physiology, emotion, cognition, parenting, schooling)
- Research and theory suggest the importance of the regulation of stress; not that stress is inherently harmful but is something to be managed – controllable vs. uncontrollable
Executive Functions

- Executive functions
- ...are dependent on effective self-regulation
- ...are likely one aspect of the SES related achievement gap
- ...are one common pathway through which child development intersects with home and school experiences
Supporting Self-Regulation

- Early childhood experience can be understood in terms of process models not only as input-output models.
- Education for children can be structured/enacted in ways that promote healthy development by focusing on self-regulation.
Collaborators and Funders

Penn State University
Mark Greenberg, PhD
Doug Granger, PhD
Cynthia Stifter, PhD
Leah Hibel, PhD
Katie Kivlighan, PhD
Kristine Voegtline, PhD

UNC Chapel Hill
Lynne Vernon-Feagans, PhD
Martha Cox, PhD
Margaret Burchinal, PhD
Mike Willoughby, PhD
Patricia Garrett-Peters, PhD
Roger Mills-Koonce, PhD
Eloise Neebe, MA
Laura Kuhn, MA

New York University
Cybele Raver, PhD,
Daniel Berry, PhD
Alexandra Ursache, MA
Eric Finegood
Alyssa Pintar
Rachel McKinnon

Tools of the Mind
Deborah Leong, PhD,
Elena Bodrova, PhD
Amy Hornbeck
Barbara Wilder-Smith

Funding
National Institute of Child Health and Human Development
R03 HD39750, P01 HD39667, R01 HD51502 (ARRA)
Institute of Education Sciences R305A100058

NYU Steinhardt
Steinhardt School of Culture, Education, and Human Development
Neuroscience and Education Lab

- http://steinhardt.nyu.edu/ihdsc/neuroscience_lab
- clancy.blair@nyu.edu